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Notation and formulation of the problem 

 

We introduce the following notation. Fix a positive integer k and an interval [a,b]. Let 

{ }0 1 1n n na x x x x b−∆ = = < < < < =�  denote a partition of the interval [a,b], 
k
�  – the space of 

polynomials of degree no greater than k. Then the space 
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is called the space of polynomial splines of degree k and defect m with knot sequence �n 

(where 1�m�k+1). When m=k+1 (maximal defect splines), there are no continuity 

conditions imposed upon the spline at the knots, such a spline is of a totally local nature. 

When m=k (continuous splines, or C-splines), one continuity condition is imposed upon the 

spline at each knot. When m=1 (minimal defect splines), the spline and all of its derivatives 

up to order k-1 are continuous at the knots and only the last derivative, of order k, can 

have discontinuities at the knots. 

 Consider the operator P
�
 of orthogonal (with respect to the inner product in the 

space L2[a,b]) projection of the space C[a,b] onto its subspace ( ),k m n∆� : 
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 is characterized by either of the following two equivalent conditions: 
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Consider the norm of the operator P
�
 as an operator from C[a,b] to C[a,b]. It is rather easy 

to verify that when partition �n is fixed, the operator P
�
 is bounded. It is therefore natural to 

pose the following question: is the family of projection operators P
�
 bounded uniformly in 

all admissible partitions �n of the interval [a,b]? 

Denote 

                                                      
1
 This work was supported by the Russian Foundation for Basic Research (grant no. 05-01-00949), Federal 

program “Leading Scientific Schools” (project NSh-5120.2006.1), and INTAS (Young Scientist Fellowship, 
grant no. 04-84-2601). 



( ),
,

,

sup
k m n

n

k m
n

c P
∆

∞∆

=
�

 

The numbers ck,m are frequently referred to as Lebesgue constants. The general problem 

is to establish whether these quantities are finite and (in case of their finiteness) to 

calculate them for various k�1, 1�m�k. (The case m=k+1 does not belong to spline theory 

proper.) In this paper we address the problem of estimating Lebesgue constants of 

continuous splines, i.e. the numbers ck,k with k�2. 

 

History of the problem 

 

The conjecture that ck,1<� for all k�1 was stated by Carl de Boor in [2], that is why 

the question of its validity bears (or, rather, bore until recently) the name of de Boor’s 

problem or de Boor’s conjecture. (Note that higher-defect splines can be obtained from 

minimal defect splines by a limiting process, which also provides the estimate ck,m �ck,1.) 

The following table summarizes the history of de Boor’s problem for minimal defect 

splines. 

 

Splines Author Year Result 

k=1 (linear) Z. Ciesielsky [5] 1963 c1,1�3 

k=1 (linear) Z. Ciesielsky [6] 1975 Problem: does c1,1=3 

hold? 

k=1 (linear) K.I. Oskolkov [7] and P. Oswald 

[11] (independently) 

1977 c1,1=3 

k=2 (parabolic) C. de Boor [1] 1968 c2,1�30 

k=3 (cubic) C. de Boor [4] 1979 c3,1�245/3 

any k A.Yu. Shadrin [9] 2001 ck,1<� 

ck,1�2k+1 

Conjecture: ck,1=2k+1. 

 

The operator of projection onto spaces of higher-defect splines has also been 

examined in the literature. 

1. De Boor in [3] (1976) proved that ck,k <�. As remarked in [9], from the results of [3] one 

can derive the estimate ck,k  � 4k k . 

2. From the results of N.L. Zmatrakov and Yu.N. Subbotin contained in [10] (1983) it also 

follows that ck,k <�. 



3. A.Yu. Shadrin in [8] (1998) proved that ck,m <� for k�5, m=k-1 and k�10, m=k-2, as well 

as for k=17,18, m=k-3 and k=26,27, m=k-4. 

But no constructive upper bounds for ck,m, apart from the obvious bounds c2,2�c2,1�30 and 

c3,3�c3,1�245/3, have thus far been obtained. 

In summary, Lebesgue constants ck,m have been proven to be finite for all k�1 and 

1�m�k+1, but constructive upper bounds exist only for k=1,2,3. Therefore, the problem of 

deriving upper estimates for the numbers ck,m for various k and m is currently on the 

agenda. 

 

Importance of the problem 

 

This problem is interesting for several reasons. 

1. Studying the norms of orthogonal projection operators onto various approximating 

spaces (i.e. their Lebesgue constants) is a classical problem in approximation theory. 

Their behavior has been profoundly studied in the case of projection with various weights 

onto spaces of algebraic and trigonometric polynomials. As described above, in spline 

theory there still remain many unresolved problems in this direction. 

2. The operator of orthogonal projection onto splines of degree k is closely related to the 

operator of interpolation by splines of degree 2k+1. In fact, the study of Lebesgue 

constants was initiated by Carl de Boor with the aim of deriving new results for 

interpolation operators. Interpolating splines (with non-uniform knots) are extensively used 

both for theoretical purposes and for the solution of practical approximation problems of all 

kinds. The derivation of new estimates for the orthogonal projection operator automatically  

leads to new results on the interpolation operator, – which, in particular, allow one to 

estimate the effect of errors in initial data on the error of approximation. 

3.�Finally, constructive estimates for Lebesgue constants can be useful in deriving and 

studying the behavior of various practical algorithms of approximation by splines. 

 

The result 

 

Theorem 1. The following estimate holds for Lebesgue constants ck,k of continuous 

splines of degree k: 

,k k k kc Aµ µ≤ ≤ , 

where 
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Here Ck
�(t) is the Gegenbauer polynomial of order � and degree k, hj is the square of its L2-

norm, Pk
(�,�)(t) is the Jacobi polynomial with parameters (�,�) and of degree k. Concerning 

the value of the constant A (which is independent of k) see lemma 4. 

Theorem 2. The exact order of growth of Lebesgue constants ck,k is k1/2. 

Note that this result was obtained with the aid of the following representation of elements 

of the space ( ), ∆k k n�  of continuous splines: 
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where 

( )
0

( )
n

l l
B x

=
 is the B-spline basis in the space of linear splines on partition �n, 

�i(x) is the characteristic function of the i th subinterval. 

The proof makes extensive use of the theory of classical orthogonal polynomials. Below 

are the principal lemmas of the proof. 

Lemma 1. Row scaling can transform the matrix of normal equations for the 

determination of coefficients ( )
0

n

l l
z

=
 to a row-diagonally dominant matrix with the coefficient 

of diagonal dominance equaling 
1
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Lemma 2. The following estimate holds for coefficients ( )
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Lemma 3. The following estimate holds for the Lebesgue function of continuous 

splines on the subinterval [xi,xi+1] (after the linear change of variable mapping [xi,xi+1] to 

[-1,1]): 
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Lemma 4. There exists a number A such that 
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This inequality is valid with A=2. For k=2 and 3 it is valid with A=1. 

Numerical calculations show that the inequality is valid with A=1 for all k from 4 to 

30. The conjecture that it is valid with A=1 for all values of k is now being investigated. 
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